On the vertices of the k-additive core
نویسندگان
چکیده
The core of a game v on N , which is the set of additive games φ dominating v such that φ(N) = v(N), is a central notion in cooperative game theory, decision making and in combinatorics, where it is related to submodular functions, matroids and the greedy algorithm. In many cases however, the core is empty, and alternative solutions have to be found. We define the k-additive core by replacing additive games by k-additive games in the definition of the core, where k-additive games are those games whose Möbius transform vanishes for subsets of more than k elements. For a sufficiently high value of k, the k-additive core is nonempty, and is a convex closed polyhedron. Our aim is to establish results similar to the classical results of Shapley and Ichiishi on the core of convex games (corresponds to Edmonds’ theorem for the greedy algorithm), which characterize the vertices of the core.
منابع مشابه
An efficient algorithm for finding the semi-obnoxious $(k,l)$-core of a tree
In this paper we study finding the $(k,l)$-core problem on a tree which the vertices have positive or negative weights. Let $T=(V,E)$ be a tree. The $(k,l)$-core of $T$ is a subtree with at most $k$ leaves and with a diameter of at most $l$ which the sum of the weighted distances from all vertices to this subtree is minimized. We show that, when the sum of the weights of vertices is negative, t...
متن کاملOn Vertices of the k-Additive Monotone Core
Given a capacity, the set of dominating k-additive capacities is a convex polytope; thus, it is defined by its vertices. In this paper we deal with the problem of deriving a procedure to obtain such vertices in the line of the results of Shapley and Ichiishi for the additive case. We propose an algorithm to determine the vertices of the k-additive monotone core. Then, we characterize the vertic...
متن کاملAn algorithm for finding the vertices of the k-additive monotone core
Given a capacity, the set of dominating k-additive capacities is a convex polytope called the k-additive monotone core; thus, it is defined by its vertices. In this paper we deal with the problem of deriving a procedure to obtain such vertices in the line of the results of Shapley and Ichiishi for the additive case. We propose an algorithm to determine the vertices of the n-additive monotone co...
متن کاملOn the vertices of the k-addiive core
The core of a game v on N , which is the set of additive games φ dominating v such that φ(N) = v(N), is a central notion in cooperative game theory, decision making and in combinatorics, where it is related to submodular functions, matroids and the greedy algorithm. In many cases however, the core is empty, and alternative solutions have to be found. We define the k-additive core by replacing a...
متن کاملOn the k-additive Core of Capacities
We investigate in this paper the set of kadditive capacities dominating a given capacity, which we call the k-additive core. We study its structure through achievable families, which play the role of maximal chains in the classical case (k = 1), and show that associated capacities are elements (possibly a vertex) of the k-additive core when the capacity is (k+1)-monotone. As a particular case, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 308 شماره
صفحات -
تاریخ انتشار 2008